

Welcome to flume’s documentation!

Contents:

	flume
	Features

	Installing

	Concepts

	Streaming mode

	Document mode

	Use Cases

	Credits

	Installation
	Stable release

	From sources

	Usage
	Document mode

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

	Credits
	Development Lead

	Contributors

	History
	0.1.0 (2018-06-20)

Indices and tables

	Index

	Module Index

	Search Page

flume

[image: _images/flume.svg]
 [https://travis-ci.org/ilovetux/flume][image: Documentation Status]
 [https://flume.readthedocs.io/en/latest/?badge=latest]Let the logs flow

Flume is a general-purpose stream processing framework. It includes
a simple but powerful templating system and all the utilities
to shape your data streams.

NOTE: This is new code. Master is in flux and docs are lacking,
but it is in a point where it could be useful to someone. If
it is useful to you, help us get to 1.0.0. You can start by reading
the contributing guide at https://github.com/ilovetux/flume/CONTRIBUTING.rst.

	Free software: GNU General Public License v3

	Documentation: https://flume.readthedocs.io.

Features

	Simple, Powerful templating system

	Extensible input and output system

	Command line utilities

	TODO: Web GUI

	TODO: Many default use cases covered

	TODO: –no-overwrite option

	TODO: Improve test coverage

Installing

Currently the only way to install this package is to clone it which
should look like the following:

$ git clone https://github.com/ilovetux/flume
$ cd flume

	Then you can run the tests::

	$ python setup.py test

And if they pass (fingers crossed!), go ahead with:

$ pip install .

Concepts

The built-in templating engine is very simple, it consists
of a namespace and a template. The template is rendered within
the context of the namespace.

Rendering involves two stages:

	scanning the template for strings matching the pattern {%<Expression>%}
where <Expression> is Python source code which is executed (exec)
within the context of the namespace and removed from the output.

	scanning the remaining output for strings matching the pattern
{{<Statement>}} where <Statement> is a Python statement which
is replaced (along with {{ and }}) with the value to which
it evaluates (eval)

This concept is applied to a variety of use cases and embodied in the form of
command line utilities which cover a number of common use cases.

Usage

The command line utility, flume, can be run in two modes:

	Streaming mode: Data is streamed through and used to populate templates

	Document mode: Render files src and write the results to dst

Streaming mode

Streaming mode runs in the following manner:

	reads data from filenames, which defaults to stdin

	At this point any expressions passed to –begins are executed

	The files specified are processed as follows in order

	Any expressions passed to –begin-files are executed

	The data from the current file is read line-by-line

	Any statements passed to –tests are evaluated

	Iff all tests pass, the following process is performed.

	Any expressions passed to –begin-lines are executed

	Any templates are rendered through the python logging system

	Any expressions passed to –end-lines are executed

	Any expressions passed to –end-files are executed

	Any expressions passed to –ends are executed

Below are a few examples. See the documentation for more details:

$ # Like grep
$ flume stream --test "'error' in line.lower()" --template "{{line}}" *.log
$ # Like wc -l
$ flume stream --end-files "print(fnr, filename)" *.log
$ # Like wc -wl
$ flume stream --begins "words=0" --begin-lines "words += nf" --end-files "print(words, fnr, filename)"
$ # Find the count of numbers "\d+" for each line
$ flume stream --begins "import re" --begin-lines "print(re.findall(r'\d+', line))" *.log

Please see the documentation for more as well as trying:

$ flume stream --help

Important Note:

If anything passed to any of the hooks is determined to exist by os.path.exists
then it will be read and executed as if that text was passed in on the CLI. This
is useful for quickly solving character escaping issues.

Document mode

Document mode runs tries to render a group of files from one location
to another. It is used like this:

$ flume doc <src> <dst>

There are options to control behavior, but the gist of it is:

	if src is a file

	if dst is a filename, src is rendered and written to dst

	if dst is a directory, src is rendered and written to a file in dst with the same basename as src

	if src is a directory

	dst must be a directory and every file in src is rendered into a file in dst with the same basename as the file from src

	If –recursive is specified, the subdirectories will be reproduced in dst

Some important notes:

	File and directory names can be templated

	If –interval is passed an integer value, the program will sleep for that many seconds and check for changes to your templates in which case they will be re-rendered

Use Cases

Streaming mode is great for processing incoming log files with tail –follow=name
or for ad-hoc analysis of text files.

Document mode is incredibly useful for a powerful configuration templating
system. The –interval option is incredibly useful as it will only re-render
on a file change, so is great for developing your templates as you can view
the results in real-time.

Document mode is also useful for near-real-time rendering of static
web resources such as charts, tables, dashboards and more.

Credits

Author: iLoveTux
This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Installation

Stable release

NOTE: This will not work! This project is pending a rename because “flume”
is not available on PyPI. Looking for suggestions at https://github.com/iLoveTux/flume/issues/4

To install flume, run this command in your terminal:

$ pip install flume

This is the preferred method to install flume, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for flume can be downloaded from the Github repo [https://github.com/ilovetux/flume].

You can either clone the public repository:

$ git clone git://github.com/ilovetux/flume

Or download the tarball [https://github.com/ilovetux/flume/tarball/master]:

$ curl -OL https://github.com/ilovetux/flume/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

In streaming mode, your templates and hooks are `eval`uated or `exec`uted
within an single, shared namespace. This namespace is injected with the
following variables at various times throughout processing:

	filename: The filename currently being processed

	line: The text of the current line

	fields: The result of calling line.split(field_sep)

	nr: The number of the current record being processed

	fnr: The number of the current record within the current file

	nf: The result of len(line.split(field_sep))

to run in streaming mode, use the stream subcommand. Here is an example
of a command which is similar to grep:

$ flume stream --test "'error' in line.lower()" --template {{line}} *.log

Here is a command which outputs the number of lines in each file:

$ flume stream --end-files "print(fnr, filename)" *.log

Here is an updated example which also prints out the word count:

$ flume stream --begins "words=0" --begin-lines "words += nf" --end-files "print(words, fnr, filename)"

Everything that looks advanced is literally just Python, so it’s easy
to pick up and batteries are included. Imports work just fine and there is
no magic. Here is an example which uses the re module find the count of
numbers:

$ flume stream --begins "import re" --begin-lines "print(re.findall(r'\d+', line))" *.log

A list of the hooks you can tie into are, If more than any are provided, they
are processed in the order given. If a filename is given and is said to exist by
os.path.exists, then that file is read in and executed by runpy.run_path:

If Python source code is provided, then that is `exec`uted.

	–begins: Executed once at startup.

	–begin-files: Executed once for each file processed.

	
	–begin-lines: Executed once for each line processed. These hooks are only

	executed if all tests specified by –tests evaluate to
Truthy values.

	
	–end-lines: Executed once after any processing of line is complete.

	end-lines are rendered regardless of the results of –tests.

	–end-files: Executed once after processing is complete for each file.

	
	–ends: Executed once after all lines are complete. This means that

	either all files are exhausted or Ctrl + C has been pressed.

Other parameters:

	
	–tests: Each of these are `eval`uated when a new line is received.

	if and only if all tests provided evaluate to Truthy values
processing of the line will continue otherwise processing is
continued with the next line.

	
	–templates: Templates are treated differently. Templates are rendered

	once per line according to the rules defined above in
“Concepts”. The result of each rendering is put out to a
logger unique to that template. This allows the Python
logging.config package to provide a very fine grain of
control. The main use case for this is to extract information
according to a variety of KPI and output to multiple
destinations, while also maintaining a record of authority.

Document mode

In document mode, your templates reside in files and are read from src
and written to dst.The behavior differs depending on the values provided
for src and dst.

If src is a directory or multiple values are provided for src
then dst must be a directory in which case all files in src will
be rendered into dst. If –recursive is specified then files will
be rendered recursively from subdirectories within src.

If src is a file then dst can be either a directory or a filename. If a
filename is provided then src will be rendered into that file, otherwise
if a directory is provided for dst then a file with the same name as src
will be created.

If –interval is specified, then after all files are rendered the process
will sleep for the specified interval. When the process awakens again all files
in src will be examined and if any have changed then that file is re-rendered
into dst. Said process will continue indefinately until the process is killed,
ie by pressing Ctrl + C.

To use flume in a project:

from flume.render import render

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/ilovetux/flume/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

flume could always use more documentation, whether as part of the
official flume docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/ilovetux/flume/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up flume for local development.

	Fork the flume repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/flume.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv flume
$ cd flume/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 flume tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7, 3.4, 3.5 and 3.6, and for PyPy. Check
https://travis-ci.org/ilovetux/flume/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_flume

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

Credits

Development Lead

	iLoveTux <cliffbressette@gmail.com> (Original Author)

Contributors

None yet. Why not be the first?

History

0.1.0 (2018-06-20)

	First release on PyPI.

Index

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to flume’s documentation!

 		
 flume

 		
 Features

 		
 Installing

 		
 Concepts

 		
 Usage

 		
 Streaming mode

 		
 Document mode

 		
 Use Cases

 		
 Credits

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 Document mode

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.1.0 (2018-06-20)

_static/up-pressed.png

_static/up.png

